

SPC-PISCES Testbed Update May 2017

Camilo Mejia Prada

Jet Propulsion Laboratory

California Institute of Technology

Plan Overview

Objectives:

- Integrate PISCES to SPC Testbed at HCIT-2W
- Use PISCES with EFC for wavefront-control

Plan:

- Align PISCES at HCIT-2W
- Test PISCES spectral calibration and registration
- Test PISCES remote acquisition and data reduction Pipeline
- Perform EFC using PISCES reduction pipeline in 18% band

SPC_IFS Layout

SPC Testbed- 2nd Floor

Optical Path

PISCES Microspectrum

Testbed configuration

- Pupil errors are behind the SP mask.
- SP mask has small Low Order error.

Run Broad band 18%, IFS

- 18% Control at 660nm
- Score: Two sides, 26 channels, 3-8 lam/D, 65^o
- Control: Two sides, 7 channels, 2.5-9.5 lam/D, 75^o
- PISCES optimal extraction

Full Run May 15, SPC_IFS

18% Control at 660nm

Jitter measurement

Jitter: (0.08,0.017) pixels rms

Probe amplitude comparison

Imager

IFS

Imager IFS sampled

Ratio


```
General model Gauss1:
hal(x) = a1*exp(-((x-b1)/c1)^2)
Coefficients (with 95% confidence bounds):
a1 = 111.6 (105.7, 117.6)
b1 = 118 (1.171.1.19)
```

b1 = 1.18 (1.171, 1.19) c1 = 0.2207 (0.2071, 0.2344)

ha2 =

General model Gauss1: $ha2(x) = a1*exp(-((x-b1)/c1)^2)$ Coefficients (with 95% confidence bounds): $a1 = 96.95 \quad (91.34, 102.6)$

b1 = 0.8992 (0.8879, 0.9105) c1 = 0.2387 (0.2227, 0.2546)

>>